Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 222(Pt B): 2761-2774, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252623

RESUMO

The tightly bonded shielding coating on biomatrix significantly enhances the functionality of medical devices, bioprostheses in particular. In our work we have obtained a polyelectrolyte coating on a biomatrix by sequentially depositing chitosan and hyaluronic acid (HA) from solutions in carbonic acid under pressure. This approach makes it possible to obtain hybrid biomatrix with a firmly bonded polymer screen due to the electrostatic bonding of polyions. High-precision analysis using a tritium label shows a 3-fold increase in quantity of HA in carbonic acid under pressure compared to the conventional method. The presence of the chitosan layer increases the HA adsorption by 15-20 % due to electrostatic interaction of differently charged polymers. Antimicrobial results show the possibility of implementing an induced antimicrobial response, due to the lysis of the upper layer of the coating (HA) and the release of antimicrobial agents in the case of growth of pathogens on the bioprosthesis.


Assuntos
Anti-Infecciosos , Quitosana , Ácido Hialurônico , Ácido Carbônico , Polieletrólitos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Valvas Cardíacas , Carbono
2.
Ann Vasc Surg ; 70: 506-516, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32890640

RESUMO

BACKGROUND: The research aims to study the effect of circumferential compliance of synthetic vascular prostheses on their healing during implantation in the infrarenal abdominal aorta of pigs. METHODS: In an experiment, 12 pigs were implanted with blood vessel prostheses in the infrarenal abdominal aorta. The prostheses possessed elastic characteristics obtained by a tensile testing machine, and differed in circumferential compliance: rigid (polycaprolactone [PCL]); less compliant than the native aorta (polyurethane [PU]); comparable in compliance to the native aorta (copolymer of vinylidene fluoride with hexafluoropropylene) before (FKM) and after radiation treatment (FKM-γ). The implanted prostheses compliance was measured by aortography during the first 3 days and 1 month after implantation, the condition of the prosthesis capsule was evaluated by macroscopic preparations and histologic examination. RESULTS: Pulsation on PCL prostheses was nonexistent immediately after implantation. On PU prostheses, slight pulsation was noted during the first 3 days and disappeared after 1 month. On FKM prostheses, although pulsation persisted after 1 month, a significant expansion of prostheses was also recorded as a result of fatigue plastic deformation. On FKM-γ prostheses, pulsation comparable in magnitude with aortic pulsation was present 1 month after implantation with no change in the size of the prosthesis. Macroscopic preparations reveal significant differences in the formed connective tissue capsule. The PCL prosthesis capsule is thick, narrowing the lumen of the vessel from the outside. The outer surface of PU prostheses is covered with a thinner uniform fibrous capsule. The inner surface of the FKM and FKM-γ prostheses is covered with a thin layer of smooth whitish tissue. The FKM prosthesis, unlike the FKM-γ prosthesis, is sharply expanded. In all cases, moderate aortic expansion was observed distal to the prosthesis. According to the histologic data, the outer and inner capsules of PCL prostheses are covered with a thick layer of fibrous tissue with signs of productive inflammation and foci of calcification. PU prostheses are surrounded by a thick connective tissue capsule partially endothelialized from the inside; the outer capsule is randomly populated with fibroblastic cells. FKM prostheses have a thin outer capsule where smooth muscle cells are visible, mainly oriented along and across the prosthesis axis; the inner capsule is thin and completely covered with a layer of endothelial cells from the side of the lumen. A layered structure is visible in the prosthesis capsule of FKM-γ, and the fibroblast cells in each layer of the capsule are oriented along or across the prosthesis axis, similar to the structure of a natural arterial vessel. The inner surface of the prosthesis is completely endothelialized. CONCLUSIONS: The healing and degree of inflammation in a capsule of blood vessel prostheses implanted in the infrarenal abdominal aorta of pigs depend on the degree of their circumferential compliance. Although maintaining pulsations, the cellular structure of the capsule is characterized by a greater degree of differentiation and approaches the structure of the native arterial wall.


Assuntos
Aorta Abdominal/cirurgia , Implante de Prótese Vascular/instrumentação , Prótese Vascular , Polímeros/química , Desenho de Prótese , Animais , Aorta Abdominal/diagnóstico por imagem , Aorta Abdominal/patologia , Raios gama , Teste de Materiais , Modelos Animais , Maleabilidade , Poliésteres/química , Polímeros/efeitos da radiação , Poliuretanos/química , Polivinil/química , Sus scrofa , Resistência à Tração , Fatores de Tempo , Remodelação Vascular , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...